Red de conocimiento del abogados - Preguntas y respuestas jurídicas - Preguntas sobre radicales cuadráticos y ecuaciones cuadráticas de una variable en noveno grado de la versión People's Education Press del nuevo plan de estudios

Preguntas sobre radicales cuadráticos y ecuaciones cuadráticas de una variable en noveno grado de la versión People's Education Press del nuevo plan de estudios

Preguntas del examen unitario "Expresión radical cuadrática"

1. Preguntas de opción múltiple (3 puntos cada una, ***24 puntos)

1. Entre ① ② ③ ④ ⑤ ⑥ debe haber ( ) radicales cuadráticos.

A ) 1 B) 2 C) 3 D) 4

2 Cuál de las siguientes operaciones es correcta ( )

A ) B)

C) 2 =2 D)

3. ¿Qué valor toma x ( )

A) x> B) x< C) x≥ D) x≤

4. ¿Cuál de las siguientes fórmulas es la raíz cuadrática más simple: ( )

A ) B) C) D)

5. Entre las siguientes expresiones radicales cuadráticas, la que tiene el mismo tipo de expresión radical cuadrática es: ( )

A ) B) C) D)

6. el valor de Es: ( )

A ) 3 B) 6 C) 9 D) 16

7. Entonces el rango de valores de x es: ( )

A ) x≥2 B) x≤3 C) 2≤x≤3 D) 2

8. Si, entonces el valor es: ( )

A ) 0 B) 1 C) -1 D) 2

2. Completa los espacios en blanco (3 puntos por cada espacio en blanco, * **18 puntos)

9. Si entonces el rango de a es.

10. Si , entonces el rango de x es .

11. Se sabe que la fórmula radical cuadrática más simple y son el mismo tipo de fórmula radical cuadrática, entonces el valor de a b es .

12. Conocido:

.

13. La posición de los números reales en el eje numérico es como se muestra en la figura

Simplifica |a-1|.

14. Escribe un número irracional de modo que su producto con sea un número racional: .

3. Responde la pregunta: (***78 puntos)

15. Al buscar el valor de x, cada uno de los siguientes radicales cuadráticos es significativo dentro del rango de reales. números. (12 puntos)

① ②

③ ④

16. Simplifica (3 puntos por cada pregunta, ***18 puntos)

① ②

③ ④

⑤ ⑥

17. Cálculo: (5 puntos por cada pregunta, ***20 puntos)

① ②

③ ④

18. Conocido: |a-4|, valor calculado.

(6 puntos)

19. Como se muestra en la imagen, hay una sala cuadrada con una longitud de lado de 8 metros. Está hecha de ladrillos cuadrados que son exactamente iguales en blanco y negro. Encuentra la longitud del lado de un ladrillo cuadrado. (6 puntos)

20. ① Conocido

② Conocido, encuentra el valor de . (6 puntos)

21. Observa las siguientes operaciones y completa las respuestas a las siguientes preguntas. (10 puntos)

①Juzga si las siguientes fórmulas son verdaderas: (4 puntos)

( )

( )

( )

( )

② Según los resultados del juicio ①, ¿qué patrones puedes encontrar? Utilice una expresión que contenga el número natural n para expresar la regla que descubrió e indique el rango de valores de n. (3 puntos)

③ Explique la exactitud de la fórmula que encontró. (3 puntos)

Preguntas del test de ecuaciones cuadráticas de una variable

1 Preguntas de opción múltiple

1. La ecuación (k-1)x2+kx-. 5=0 es de una variable Ecuación cuadrática, entonces el valor de k no puede ser ( )

A, 0;

2. La solución de la ecuación (2x-1)(x+1)=(3x+1)(x+1) es ( )

A, x=-2. ; B, x=-1 ; C. x=-1, x=-2; D. Sin raíces reales.

3. La ecuación sobre x (m-1)x2-2mx+m=0 tiene dos raíces reales, entonces el rango de valores de m es ( )

A, m> 0; B, m ≥ 0; C, m > 0 y m ≠ 1; m ≥ 0 y m ≠ 1.

4 La raíz de la ecuación cuadrática x2+2x-1=0 es ().

A. Hay dos raíces reales desiguales; B. Hay dos raíces reales iguales;

C. No hay raíces reales.

5. Las dos raíces de la ecuación x2-3x-1=0 son x1, y el valor de x2 es 1/x1 1/x2 ( )

A, 3; B, -3;

6. La ecuación x2-(m-1)x+1=0 sobre x tiene dos raíces reales iguales, entonces m es igual a ( )

A, -1 o 2 B , 3 o -1 C, 1 D, -3 o 1

7. Una raíz de la ecuación cuadrática x2-ax-3a=0 sobre x es 6 y la otra raíz es ( ).

A, 2 B, -2 C, -6 o 2 D, 6 o -2

8. Cuando el valor de la expresión algebraica x2+3x+5 es 7, el valor de la expresión algebraica 3x2+9x-2 es ( )

A, 4 B, 2 C, -2 D, -4

Si 2x+1 y 4x2. -2x-5 son opuestos entre sí, entonces x es igual a ( )

A, -1 o 2/3 B, 1 o -2/3 C, 1 o -1 D, 1 o 3/2

10. Si a es la ecuación x2 -bx-a=0 raíz y a≠0, entonces a-b es igual a ( )

A, 1 B, - 1 C, ±1 D, no se puede determinar

II, completa los espacios en blanco

1. La solución de la ecuación x2=x es la solución de la ecuación 2(x-3). )2=72 es.

2. Se sabe que x satisface x2-3x+1=0, entonces x+1/x=.

3. Pon la ecuación x2-6x-5=0 en la forma de (x a) 2 =b, luego a=( ), b=( )

4. x El trinomio cuadrático x2+kx+4 es una forma cuadrada perfecta, entonces k=.

5. Si (x2 y2-1) 2=4, entonces x2 y2= ( )

6. 2)x+3m-4=0, cuando m, es una ecuación cuadrática de una variable; cuando m, es una ecuación lineal de una variable;

7. Si las ecuaciones x2+k2-16=0 y x2-3k+12=0 sobre x tienen las mismas raíces reales, entonces el valor de k es .

8. El precio original de una prenda de vestir es de 200 yuanes. Después de dos aumentos de precio consecutivos de un%, el precio de venta es de 242 yuanes, entonces el valor de a es.

3. Utilizar métodos apropiados para resolver ecuaciones

(1) 2x(x+4)=1 (2)(2x-1)2=25

( 3)x2+3x-4=0 (4) 6x(x+1)=5+5x

IV. Responde las preguntas

1. del triángulo son 8 y 6 respectivamente, y la longitud del tercer lado es raíz real de la ecuación cuadrática x2-4x-60=0.

2. Si la ecuación x2+2x=m+9 sobre x no tiene raíces reales, intenta juzgar las raíces de la ecuación y2+my-2m+5=0 sobre y.

3. Cuando una tienda vende un producto con un precio unitario de 40 yuanes por 50 yuanes, puede vender 500 unidades. Se sabe que cada vez que el precio del producto aumenta en 1 yuan, sus ventas. El volumen disminuirá en 10 unidades. Si desea obtener una ganancia de 8.000 yuanes, ¿cuál debería ser el precio de venta y cuántas unidades deberían comprarse en este momento?