Red de conocimiento del abogados - Preguntas y respuestas penales - Un ejemplo de humanos que utilizan seres vivos como "maestros".

Un ejemplo de humanos que utilizan seres vivos como "maestros".

Mariposas

Las mariposas coloridas, como la mariposa de doble luna, la mariposa monarca de venas marrones, especialmente la mariposa de alas fluorescentes, de repente se vuelven doradas, verdes y azules bajo la luz del sol. Los científicos están aportando enormes beneficios a la defensa militar mediante el estudio de los colores de las mariposas. Durante la Segunda Guerra Mundial, el ejército alemán rodeó Leningrado e intentó utilizar bombarderos para destruir sus objetivos militares y otras instalaciones de defensa. Basándose en la falta de comprensión del camuflaje en ese momento, el entomólogo soviético Schwarzenegger propuso el principio de que el color de las mariposas no se encuentra fácilmente en las flores y cubrió instalaciones militares con un camuflaje similar al de las mariposas. Por tanto, a pesar de los esfuerzos del ejército alemán, la base militar de Leningrado permaneció intacta, sentando una base sólida para la victoria final. Siguiendo el mismo principio, más tarde se fabricaron uniformes de camuflaje, que reducían considerablemente las bajas en las batallas.

Los constantes cambios de posición de los satélites en el espacio provocarán cambios bruscos de temperatura en ocasiones la diferencia de temperatura puede llegar a los doscientos o trescientos grados, afectando gravemente al funcionamiento normal de muchos instrumentos. Inspirados por el hecho de que las escamas de las mariposas cambian automáticamente de ángulo con la dirección de la luz solar para regular la temperatura corporal, los científicos convirtieron el sistema de control de temperatura del satélite en un estilo de rejilla con diferentes capacidades de disipación de calor y radiación. Se instala un cable metálico sensible a la temperatura en la posición de rotación de cada ventana, que puede ajustar la apertura y el cierre de la ventana a medida que cambia la temperatura, manteniendo así constante la temperatura interna del satélite y resolviendo un problema importante en la industria aeroespacial.

Escarabajo

Cuando el escarabajo se defiende, puede rociar una "cáscara" de líquido a alta temperatura con un olor fétido para confundir, irritar y asustar a sus enemigos. Después de la disección, los científicos descubrieron que había tres cámaras en el cuerpo del escarabajo, que almacenaban una solución de fenol dihídrico, peróxido de hidrógeno y enzimas biológicas, respectivamente. El difenol y el peróxido de hidrógeno fluyen hacia la tercera cámara y se mezclan con enzimas biológicas para provocar una reacción química, que instantáneamente se convierte en veneno a 100°C y se rocía rápidamente. Este principio se aplica actualmente en la tecnología militar. Durante la Segunda Guerra Mundial, los nazis alemanes construyeron un nuevo tipo de motor con enorme potencia, rendimiento seguro y confiable basado en este mecanismo, y lo instalaron en misiles de crucero, haciéndolo volar más rápido, más seguro y más estable, y mejorando la tasa de acierto. . Londres, Inglaterra, sufrió grandes pérdidas cuando fue bombardeada. Expertos militares estadounidenses desarrollaron un arma binaria avanzada inspirada en el principio de fumigación de escarabajos. El arma contiene dos o más sustancias químicas productoras de toxinas en dos contenedores separados. Después de disparar el proyectil, el diafragma se rompe y los dos intermediarios del veneno se mezclan y reaccionan entre 8 y 10 segundos después del vuelo del proyectil, produciendo un veneno mortal en el momento en que alcanza el objetivo y mata al enemigo. Son fáciles de producir, almacenar y transportar, seguros y no propensos a fallar. Las luciérnagas pueden convertir directamente la energía química en energía luminosa con una eficiencia de conversión del 100%, mientras que la eficiencia luminosa de las lámparas eléctricas comunes es sólo del 6%. La fuente de luz fría fabricada por personas que imitan el principio luminoso de las luciérnagas puede aumentar la eficiencia luminosa más de diez veces y ahorrar mucho energía. Además, en la aviación se ha utilizado con éxito un velocímetro aire-tierra basado en el mecanismo de respuesta al movimiento aparente del escarabajo.

Libélula

Las libélulas pueden generar un flujo de aire local inestable que es diferente de la atmósfera circundante a través de la vibración de sus alas, y utilizan los vórtices generados por el flujo de aire para elevarse. Las libélulas pueden volar con muy poco empuje, no sólo hacia adelante, sino también hacia atrás, hacia la izquierda y hacia la derecha. Su velocidad de vuelo hacia adelante puede alcanzar los 72 km/h. Además, las libélulas tienen un comportamiento de vuelo simple, con solo dos pares de alas que están constantemente. moviéndose. El suelo late. Los científicos han desarrollado con éxito un helicóptero basado en esta base estructural. Cuando un avión vuela a gran velocidad, a menudo provoca vibraciones violentas y, a veces, incluso rompe las alas, provocando que el avión se estrelle. La libélula volaba de forma segura a altas velocidades, por lo que la gente siguió su ejemplo y añadió contrapesos a las dos alas del avión para resolver el espinoso problema de las vibraciones causadas por el vuelo a alta velocidad.

Para estudiar la aerodinámica del vuelo en planeo y la colisión y su eficiencia de vuelo, se desarrolló un modelo de ala motora (ala) de cuatro palas y control remoto horizontal, y los parámetros de vuelo se probaron en un túnel de viento por primera vez.

En el segundo modelo se intentó instalar un ala que volaba a una frecuencia más rápida, alcanzando una velocidad de 18 vibraciones por segundo. Lo que es único es que este modelo utiliza un dispositivo que puede ajustar de forma variable la diferencia de fase entre las aletas delanteras y traseras.

El objetivo central y a largo plazo de la investigación es estudiar el rendimiento de aviones propulsados ​​por "alas" y compararlos con la eficiencia de aviones propulsados ​​por hélices convencionales.

Mosca

Lo especial de la mosca doméstica es su rápida técnica de vuelo, lo que dificulta que el ser humano pueda atraparla. Incluso desde atrás, es difícil acercarse a él. Imagina cada situación, tiene mucho cuidado y puede actuar con rapidez. Entonces, ¿cómo lo hace?

Los entomólogos han descubierto que las alas traseras de la mosca degeneran en un par de varillas de equilibrio. Cuando vuela, la barra de equilibrio vibra mecánicamente a una determinada frecuencia, lo que puede ajustar la dirección del movimiento del ala y es un navegador para mantener la mosca equilibrada. Basándose en este principio, los científicos han desarrollado una nueva generación de navegadores: giroscopios de vibración, que mejoran enormemente el rendimiento de vuelo de la aeronave, permitiendo que la aeronave detenga automáticamente los peligrosos vuelos de vuelco y restablezca automáticamente el equilibrio cuando el cuerpo de la aeronave se inclina fuertemente, incluso si Esto es cuando el avión realiza el giro brusco más complejo. El ojo compuesto de la mosca contiene 4.000 ojos individuales que pueden generar imágenes de forma independiente, lo que permite una visión clara de los objetos en casi 360 grados. Inspirándose en el ojo de la mosca, la gente creó una cámara con ojo de mosca compuesta por 1329 lentes pequeñas, que pueden tomar 1329 fotografías de alta resolución a la vez. Es ampliamente utilizado en los campos militar, médico, de aviación y aeroespacial. Las moscas tienen un sentido del olfato especialmente sensible y pueden analizar rápidamente decenas de olores y reaccionar inmediatamente.

Basándose en la estructura del órgano olfativo de la mosca, los científicos convirtieron varias reacciones químicas en pulsos eléctricos para crear un pequeño analizador de gas muy sensible, que se usa ampliamente en naves espaciales, submarinos, minas, etc. para detectar componentes de gas, lo que facilita la investigación y producción científica. Más seguro y fiable.

Abejas

Un panal se compone de pequeñas colmenas hexagonales cuidadosamente dispuestas, y la parte inferior de cada pequeña colmena se compone de tres formas de diamantes idénticas. Estas estructuras son exactamente las mismas que las calculadas con precisión por los matemáticos modernos: un rombo con un ángulo obtuso de 109 028' y un ángulo agudo de 70032'. Son las estructuras que más ahorran material y su gran capacidad sorprende a muchos expertos ya que son muy resistentes. La gente imita su estructura y utiliza diversos materiales para fabricar paneles estructurales tipo sándwich alveolar. Este panel estructural tiene alta resistencia, peso ligero y no es fácil de conducir el sonido y el calor. Son materiales ideales para la fabricación de transbordadores espaciales, naves espaciales y satélites. Los polarizadores sensibles a la dirección de la luz polarizada están dispuestos uno al lado del otro en cada ojo del ojo compuesto de la abeja y pueden ser posicionados con precisión por el sol. Basándose en este principio, los científicos han desarrollado con éxito navegadores de luz polarizada, que se utilizan ampliamente en la navegación.

Otros

La pulga del salto tiene una capacidad de salto muy alta y ha sido la más estudiada por los expertos en aviación. Inspirándose en su despegue vertical, una empresa británica de fabricación de aviones ha construido con éxito un avión Harrier que puede despegar y aterrizar casi verticalmente. Basándose en las características estructurales de los ojos compuestos únicos de los insectos, la tecnología de televisión moderna ha creado televisores en color de pantalla grande, que también pueden estar compuestos por pequeñas pantallas de televisión en color. Algunas imágenes pequeñas específicas se pueden enmarcar en cualquier posición de la misma pantalla. Se puede reproducir la misma imagen. Basándose en las características estructurales de los ojos compuestos de insectos, los científicos han desarrollado con éxito un dispositivo de sistema óptico de apertura múltiple que facilita la búsqueda de objetivos y se ha utilizado en algunos sistemas de armas extranjeros importantes. Basado en el principio de supresión mutua entre ojos compuestos de algunos insectos acuáticos, se produjo un modelo electrónico de supresión lateral que puede utilizarse en varios sistemas fotográficos. Las fotografías tomadas pueden mejorar el contraste de los bordes de la imagen y resaltar el contorno de la imagen. También pueden usarse para mejorar la sensibilidad de visualización del radar y también pueden usarse para el preprocesamiento de sistemas de reconocimiento de texto e imágenes. Basado en el procesamiento de información y los principios de navegación direccional de los ojos compuestos de insectos, los Estados Unidos han desarrollado un modelo de ingeniería de buscador de guía terminal con gran valor práctico. Japón ha utilizado la morfología y las características de los insectos para desarrollar nuevos métodos de construcción de maquinaria y edificios, como los robots hexápodos.

Los insectos han evolucionado gradualmente con los cambios en el medio ambiente durante cientos de millones de años de evolución, y han desarrollado sus propias habilidades de supervivencia en diversos grados. Con el desarrollo de la sociedad, las personas se vuelven cada vez más conscientes de las diversas actividades vitales de los insectos y de la importancia de los insectos para los humanos. Junto con la aplicación de la tecnología de la información, especialmente la aplicación de tecnología bioelectrónica informática de nueva generación en entomología, una serie de proyectos de biotecnología, como los biosensores desarrollados mediante la simulación de las capacidades sensoriales de los insectos para detectar el tipo y la concentración de sustancias, son computadoras de referencia desarrolladas para imitar la actividad cerebral utilizando las estructuras neuronales de los insectos pasará de la imaginación de los científicos a la realidad y entrará en diversos campos. Los insectos harán mayores contribuciones a la humanidad.

/question/4591736.html

Moscas y naves espaciales

Las molestas moscas parecen no tener nada que ver con la gran industria aeroespacial, pero la biónica las acerca mucho juntos conectados.

Las moscas son conocidas como "cosas malolientes". Se pueden encontrar en todas partes y tienen mal olor. Las moscas tienen un sentido del olfato especialmente sensible y pueden percibir olores a miles de metros de distancia. Pero las moscas no tienen "nariz". ¿De qué depende para actuar como sentido del olfato? Resulta que los receptores olfativos de la "nariz" de la mosca están distribuidos en un par de antenas en la cabeza.

Cada "nariz" tiene sólo una "fosa nasal" conectada con el mundo exterior, que contiene cientos de células nerviosas olfativas. Si un olor ingresa a las fosas nasales, estos nervios convierten inmediatamente el estímulo del olor en impulsos eléctricos nerviosos que se envían al cerebro. El cerebro puede diferenciar entre diferentes sustancias olfativas en función de los diferentes impulsos eléctricos neuronales que producen. Por tanto, las antenas de la mosca actúan como un sensible analizador de gases.

Inspirándose en esto, la biónica imitó con éxito un pequeño analizador de gases muy peculiar basado en la estructura y función del órgano olfativo de la mosca. La sonda de este instrumento no es de metal sino de una mosca viva. Se inserta un microelectrodo muy fino en el nervio olfatorio de la mosca y la señal eléctrica del nervio guiado se amplifica mediante un circuito electrónico y se envía al analizador que puede hacer sonar una alarma tan pronto como detecta una señal de sustancias olorosas. Este instrumento ha sido instalado en la cabina de la nave espacial para detectar la composición del gas en la cabina.

Este pequeño analizador de gases también puede medir gases nocivos en submarinos y minas. Este principio también se puede utilizar para mejorar el dispositivo de entrada de la computadora y el principio estructural del analizador cromatógrafo de gases.

De las luciérnagas a la luz artificial

Desde que el hombre inventó la luz eléctrica, la vida se ha vuelto más cómoda y rica. Pero las luces eléctricas sólo pueden convertir una pequeña parte de la energía eléctrica en luz visible, y la mayor parte del resto se desperdicia en forma de energía térmica. Los rayos de calor de las luces eléctricas son perjudiciales para los ojos humanos. Entonces, ¿existe una fuente de luz que solo emita luz pero no genere calor? El ser humano ha vuelto a centrar su atención en la naturaleza.

En la naturaleza, muchos organismos pueden emitir luz, como bacterias, hongos, gusanos, moluscos, crustáceos, insectos y peces, etc., y la luz que emiten estos animales no produce calor, por lo que es También llamada "luz fría".

Entre los muchos animales luminosos, las luciérnagas son uno de ellos.

Hay aproximadamente 65.438+0.500 especies de luciérnagas. Los colores de su luz fría varían del amarillo verdoso al naranja, y el brillo de su luz también es diferente. Las luciérnagas emiten luz fría, que no sólo tiene una alta eficiencia luminosa, sino que también es generalmente más suave, adecuada para el ojo humano y tiene una intensidad luminosa relativamente alta. Por tanto, la bioluminiscencia es una fuente de luz ideal para los humanos.

Los científicos descubrieron que el dispositivo emisor de luz de las luciérnagas se encuentra en el abdomen. Este emisor de luz consta de tres partes: una capa luminiscente, una capa transparente y una capa reflectante. La capa luminiscente contiene miles de células luminiscentes, todas las cuales contienen luciferina y luciferasa. Bajo la acción de la luciferasa, la luciferina se combina con la oxidación para emitir fluorescencia con la participación de agua intracelular. El brillo de las luciérnagas es esencialmente el proceso de convertir la energía química en energía luminosa.

Ya en la década de 1940, la gente creó lámparas fluorescentes basadas en investigaciones con luciérnagas, que cambiaron en gran medida la fuente de iluminación humana. En los últimos años, los científicos primero aislaron luciferina pura de luciérnagas, luego aislaron luciferasa y luego sintetizaron luciferina artificialmente mediante métodos químicos. Una fuente de luz biológica compuesta de luciferina, luciferasa, ATP (trifosfato de adenosina) y agua puede utilizarse como linterna en minas llenas de gases explosivos. Dado que este tipo de lámpara no tiene fuente de alimentación y no genera un campo magnético, puede usarse para limpiar minas terrestres magnéticas bajo la iluminación de fuentes de luz biológicas.

Ahora, las personas pueden obtener luz fría similar a la bioluminiscencia para iluminación de seguridad mezclando algunos productos químicos.

Peces eléctricos y baterías de voltios

Muchas criaturas en la naturaleza pueden generar electricidad, y solo hay más de 500 especies de peces. La gente llama a estos peces que pueden descargar electricidad "peces eléctricos".

Los distintos peces eléctricos tienen diferentes técnicas de descarga. Las rayas eléctricas, los bagres y las anguilas tienen la mayor capacidad de descarga. Los torpedos de tamaño mediano pueden producir alrededor de 70 voltios, mientras que los torpedos africanos pueden producir hasta 220 voltios; el bagre eléctrico africano puede producir 350 voltios y las anguilas eléctricas pueden producir 500 voltios; Existe una anguila eléctrica sudamericana que puede generar voltajes de hasta 880 voltios y es conocida como la campeona de las descargas eléctricas. Se dice que mata animales grandes como los caballos.

¿Cuál es el secreto de la descarga eléctrica del pez? Después de una investigación anatómica sobre peces eléctricos, finalmente se descubrió que hay un extraño órgano generador de energía en el pez eléctrico. Estos generadores están formados por muchas células translúcidas en forma de disco llamadas electroplacas o electroplacas. Debido a los diferentes tipos de peces eléctricos, la forma, posición y número de las placas eléctricas del generador también son diferentes. El generador de la anguila eléctrica es prismático y está ubicado en los músculos a ambos lados de la columna de la cola; el generador del torpedo tiene forma de riñón plano, está dispuesto a ambos lados de la línea media del cuerpo y tiene 2 millones de placas eléctricas. El generador eléctrico del bagre se origina en una especie de glándula situada entre la piel y los músculos y tiene alrededor de 5 millones de placas eléctricas. El voltaje generado por una sola placa es muy débil, pero debido a que hay muchas placas, el voltaje generado es muy grande.

Las extraordinarias habilidades de los peces eléctricos han despertado un gran interés. A principios del siglo XIX, el físico italiano Volta diseñó la batería voltaica más antigua del mundo basada en el órgano generador de energía del pez eléctrico. Debido a que este tipo de batería está diseñada sobre la base del generador natural del pez eléctrico, la investigación sobre el pez eléctrico, llamado "órgano eléctrico artificial", también ha dado a la gente esta iluminación: si el órgano generador de energía del pez eléctrico puede funcionar con éxito imitado, entonces puede resolverse fácilmente y eficazmente los problemas de energía de barcos y submarinos.

Las orejas de las medusas orientadas al viento

"Las golondrinas vuelan bajo antes de la lluvia, las cigarras cantan y el cielo se aclara bajo la lluvia". El clima. Todos los pescadores de la costa saben que los peces y medusas que viven a lo largo de la costa nadan hacia el mar en grupos, lo que indica que se avecina una tormenta.

La medusa, también conocida como medusa, es un antiguo celenterado que flotaba en el océano hace ya 500 millones de años. Este animal inferior tiene el instinto de predecir tormentas y nadará hasta el mar para refugiarse ante cada aviso de tormenta.

Resulta que en el océano azul, las ondas infrasonidas (con una frecuencia de 8 a 13 veces por segundo) generadas por la fricción entre el aire y las olas son siempre el preludio de los avisos de tormenta. Este tipo de onda infrasónica es inaudible para el oído humano, pero las medusas pequeñas son muy sensibles. Bionics ha descubierto que hay un mango delgado en la cavidad auditiva de las medusas, una pequeña bola en el mango y una pequeña piedra auditiva dentro de la bola. Cuando el infrasonido previo a una tormenta golpea las piedras auditivas en los oídos de la medusa, las piedras estimulan los receptores nerviosos en las paredes de las bolas, por lo que la medusa escucha el estruendo de la tormenta que se aproxima.

Bionics imita la estructura y función de las orejas de las medusas y diseña predictores de tormentas para las orejas de las medusas, que simulan con precisión los órganos de las medusas que detectan el infrasonido. Este instrumento está instalado en la cubierta delantera del barco. Cuando recibe las ondas infrasonidas de la tormenta, puede detener automáticamente la rotación de la bocina de 360°. La dirección que apunta es la dirección de la tormenta. La lectura del indicador muestra la intensidad de la tormenta. Este tipo de pronosticador puede predecir tormentas con 15 horas de antelación, lo que tiene gran importancia para la seguridad de la navegación y la pesca.

/question/4429162.html